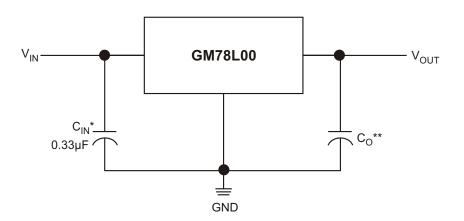


POSITIVE VOLTAGE REGULATORS

Description

The GM78L00 series in positive voltage regulators are lowcost devices providing a simple solution for a wide variety of applications, which requires a regulated supply of up to 100mA.

These virtually indestructible positive voltage regulators are protected by thermal shutdown and internal currentlimiting. Most applications require no external components.

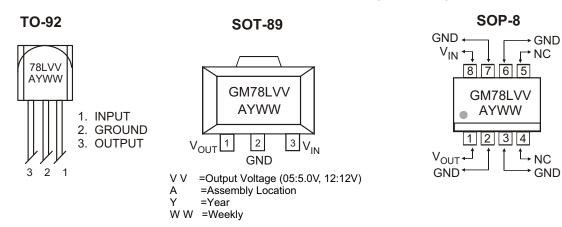

The GM78L00 is very versatile. To use them as fixed voltage regulators in a wide range of applications, including both local and on-card regulation for elimination of noise and distribution problems associated with single-point regulation. They can also be used with power pass elements to make high current voltage regulators.

The GM78L00 offers impressive performance advantages over old-fashioned zener diode-resistor combinations, providing lower output impedance and reduced quiescent cur-

Features

- **Output Current up to 100mA**
- Output Voltages 5V, 6V, 8V, 9V, 10V, 12V, 15V, 18V and 24V
- 3- Terminal Regulators
- No External Components Required
- **Internal Thermal Overload Protection**
- **Internal Short Circuit Current-Limiting**
- Available in TO-92, SOT-89 and SOP-8 packages

TYPIC APPLICATION CIRCUITS


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above, the output voltage even during the low point on the input ripple voltage.

- \mathbf{C}_{IN} is required if regulator is located an appreciable distance from power supply
- ** C_O is not needed for stability; however, it does improve transient response.

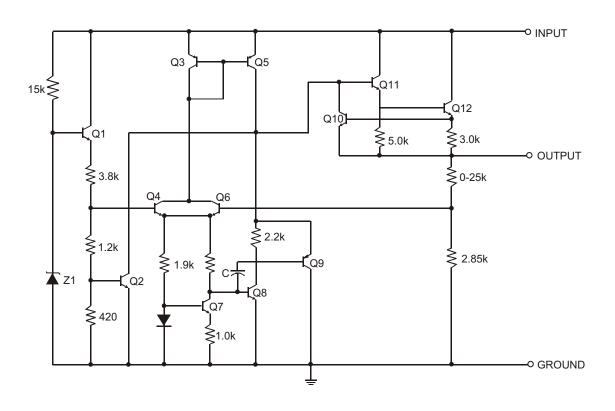
POSITIVE VOLTAGE REGULATORS

◆ MARKING INFORMATION & PIN CONFIGURATIONS (TOP VIEW)

♦ ORDERING INFORMATION

Pro Number	V _{out}	Package
GM78L05	5.0V	TO-92, SOT-89, SOP-8
GM78L06	6.0V	TO-92, SOT-89, SOP-8
GM78L08	8.0V	TO-92, SOT-89, SOP-8
GM78L09	9.0V	TO-92, SOT-89, SOP-8
GM78L10	10V	TO-92, SOT-89, SOP-8
GM78L12	12V	TO-92, SOT-89, SOP-8
GM78L15	15V	TO-92, SOT-89, SOP-8
GM78L18	18V	TO-92, SOT-89, SOP-8
GM78L24	24V	TO-92, SOT-89, SOP-8

^{*} For detail Ordering Number identification, please see last page.


◆ RECOMMENDED OPERATING CONDITIONS (I₀ = 1.5A)

PARAMETER		MIN	MAX	UNIT
	GM78L05	7	20	
	GM78L06	8	20	
	GM78L08	10.5	23	
	GM78L09	11.5	24	
Input Voltage V _I	GM78L10	12.5	25	V
	GM78L12	14.5	27	
	GM78L15	17.5	30	
	GM78L18	21	33	
	GM78L24	27	39	
Output Current, I _O			100	mA
Operating virtual junction temperature,	T _J	0	125	°C

POSITIVE VOLTAGE REGULATORS

♦ BLOCK DIAGRAM

◆ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNITS
Input Voltage GM78L05 to GM78L10 GM78L12 to GM78L18 GM78L24	V _I	30 35 40	V
Power Dissipation	P _D	Internally limited	W
Operating Junction Temperature Range	T _J	0 to +150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature 1.6mm (1/16 inch) from case for 10 sec.	T _L	260	°C

POSITIVE VOLTAGE REGULATORS

◆ ELECTRICAL CHARACTERISTICS at specified Junction Temperature

GM78L05: V_1 = 10V, I_O = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDI	TIONS *	MIN	TYP	MAX	UNIT
		25°C	4.8	5.0	5.2	
Output Voltage **	I _O = 1mA to 40mA V _I =7V to 20V	0°C to 125°C	4.75	5.0	5.25	V
	I _O = 1mA to 70mA		4.75	5.0	5.25	
Input Degulation	V _I =7V to 20V	25°C		32	150	/
Input Regulation	V _I =8V to 20V			26	100	mV
Ripple Rejection	V _I =8V to 18V, f = 120Hz	25°C	41	49		dB
Output Degulation	I _O =1mA to 100mA	0500		15	60	
Output Regulation	I _O =1mA to 40mA	25°C		8	30	mV
Output Resistance	f = 10Hz to 100kHz	25°C		42		μV
Dropout Voltage		25°C		1.7		V
Bias Current		25°C		3.8	6	
Bias Current		125°C			5.5	mA
Diag Cumant	V _I =8V to 20V	0°C to 125°C			1.5	
Bias Current	I _O =1mA to 40mA				0.1	mA

GM78L06: V_I = 11 V_i , I_O = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDI	TIONS *	MIN	TYP	MAX	UNIT
		25°C	5.75	6.0	6.25	
Output Voltage **	I_O = 1mA to 40mA V_1 =8V to 20V	0°C to 125°C	5.7	6.0	6.3	V
	I _O = 1mA to 70mA		5.7	6.0	6.3	
lanut Danulation	V _I =8V to 20V	25°C		35	175	.,
Input Regulation	V _I =9V to 20V			29	125	mV
Ripple Rejection	V _I =9V to 19V, f = 120Hz	25°C	40	48		dB
Output Regulation	I _O =1mA to 100mA	0500		16	80	\/
Output Regulation	I _O =1mA to 40mA	25°C		9	40	mV
Output Resistance	f = 10Hz to 100kHz	25°C		46		μV
Dropout Voltage		25°C		1.7		V
Bias Current		25°C		3.9	6	A
Bias Current		125°C			5.5	mA
Bias Current	V _I =9V to 20V	0°C to 125°C			1.5	A
Dias Guiletti	I _O =1mA to 40mA	0 C to 125 C			0.1	mA

^{*}Pulse testing tehniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account.

** The specification applies only for DC power dissipation permitted by absolute maximum ratings

POSITIVE VOLTAGE REGULATORS

♦ ELECTRICAL CHARACTERISTICS at specified Junction Temperature

GM78L08: V_I = 14V, I_O = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDI	TIONS *	MIN	TYP	MAX	UNIT
		25°C	7.7	8.0	8.3	
Output Voltage **	I _O = 1mA to 40mA V _I =10.5V to 23V	0°C to 125°C	7.6	8.0	8.4	V
	I _O = 1mA to 70mA		7.6	8.0	8.4	
Innut Dogulation	V _I =10.5V to 23V	25°C		42	175	/
Input Regulation	V _I =11V to 23V			36	125	mV
Ripple Rejection	V _I =13V to 23V, f = 120Hz	0°C to 125°C	37	46		dB
Output Regulation	I _O =1mA to 100mA	0500		18	80	\/
Output Regulation	I _O =1mA to 40mA	25°C		10	40	mV
Output Resistance	f = 10Hz to 100kHz	25°C		54		μV
Dropout Voltage		25°C		1.7		V
Bias Current		25°C		4	6	^
Bias Current		125°C			5.5	mA
Dias Commant	V _I =11V to 23V	0001 40500			1.5	^
Bias Current	I _O =1mA to 40mA	0°C to 125°C			0.1	mA

GM78L09: V_1 = 16V, I_0 = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDI	TIONS *	MIN	TYP	MAX	UNIT
		25°C	8.6	9.0 9.4		
Output Voltage **	I _O = 1mA to 40mA V _I =12V to 24V	0°C to 125°C	8.55	9.0	9.45	V
	I _O = 1mA to 70mA		8.55	9.0	9.45	
Innut Degulation	V _I =12V to 24V	0500		45	175	.,
Input Regulation	V _I =13V to 24V	25°C		40	125	mV
Ripple Rejection	$V_I = 15V$ to 25V, $f = 120Hz$	25°C	38	45		dB
Output Degulation	I _O =1mA to 100mA	0.500		19	90	mV
Output Regulation	I _O =1mA to 40mA	25°C		11	40	
Output Resistance	f = 10Hz to 100kHz	25°C		58		μV
Dropout Voltage		25°C		1.7		V
Pigo Current		25°C		4.1	6	
Bias Current		125°C			5.5	mA
Bias Current	V _I =13V to 20V	000 to 40500			1.5	^
Dias Guiterii	I _O =1mA to 40mA	0°C to 125°C			0.1	mA

^{*}Pulse testing tehniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account.

** The specification applies only for DC power dissipation permitted by absolute maximum ratings

POSITIVE VOLTAGE REGULATORS

◆ ELECTRICAL CHARACTERISTICS at specified Junction Temperature

GM78L10: V_1 = 17V, I_0 = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDI	TIONS *	MIN	TYP	MAX	UNIT
		25°C	9.6	10	10.4	
Output Voltage **	I _O = 1mA to 40mA V _I =13V to 25V	0°C to 125°C	9.5	10	10.5	V
	I _O = 1mA to 70mA		9.5	10	10.5	
Innut Demulation	V _I =13V to 25V	25°C		51	175	.,
Input Regulation	V _I =14V to 25V			42	125	mV
Ripple Rejection	V _I =15V to 25V, f = 120Hz	0°C to 125°C	37	44		dB
Output Population	I _O =1mA to 100mA	0500		20	90	
Output Regulation	I _O =1mA to 40mA	25°C		11	40	mV
Output Resistance	f = 10Hz to 100kHz	25°C		62		μV
Dropout Voltage		25°C		1.7		V
Bias Current		25°C		4	6	mA
Bias Current		125°C			5.5	
Bias Current	V _I =14V to 25V	202 / 4250			1.5	
DIAS CUITETIL	I _O =1mA to 40mA	0°C to 125°C			0.1	mA

GM78L12: V_1 = 19 V_1 , I_0 = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDI	TIONS *	MIN	TYP	MAX	UNIT
		25°C	11.5	12	12.5	
Output Voltage **	I _O = 1mA to 40mA V _I =14.5V to 27V	0°C to 125°C	11.4	12	12.6	V
	I _O = 1mA to 70mA		11.4	12	12.6	
Input Population	V _I =14.5V to 27V	0500		55	250	
Input Regulation	V _I =16V to 27V	25°C		49	200	mV
Ripple Rejection	V _I =15V to 25V, f = 120Hz	25°C	37	42		dB
Output Degulation	I _O =1mA to 100mA			22	100	mV
Output Regulation	I _O =1mA to 40mA	25°C		13	50	
Output Resistance	f = 10Hz to 100kHz	25°C		70		μV
Dropout Voltage		25°C		1.7		V
Bias Current		25°C		4.3	6.5	^
DIAS CUITEIIL		125°C			6.0	mA
Bias Current	V _I =16V to 27V	000 1- 40500			1.5	A
DIAS CUITEIIL	I _O =1mA to 40mA	0°C to 125°C			0.1	mA

^{*}Pulse testing tehniques are used to maintain the junction temperature as close to the ambient temperature as possible.

Thermal effects must be taken into account.

** The specification applies only for DC power dissipation permitted by absolute maximum ratings

POSITIVE VOLTAGE REGULATORS

♦ ELECTRICAL CHARACTERISTICS at specified Junction Temperature

GM78L15: V_I = 23V, I_O = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDIT	IONS *	MIN	TYP	MAX	UNIT
		25°C	14.4	15	15.6	
Output Voltage **	I _O = 1mA to 40mA V _I =17.5V to 30V	0°C to 125°C	14.25	15	15.75	V
	I _O = 1mA to 70mA		14.25	15	15.75	
Innut Degulation	V _I =17.5V to30V 25°C	0500		65	300	
Input Regulation	V _I =19V to 30V	25°C		58	250	mV
Ripple Rejection	V _I =18.5V to 28.5V, f = 120Hz	0°C to 125°C	34	39		dB
Output Degulation	I _O =1mA to 100mA	0500		25	150	/
Output Regulation	I _O =1mA to 40mA	25°C		15	75	mV
Output Resistance	f = 10Hz to 100kHz	25°C		82		μV
Dropout Voltage		25°C		1.7		V
Bias Current		25°C		4.6	6.5	Λ
bias Current		125°C			6.0	mA
Bias Current	V _I =14V to 25V	000 1 10500			1.5	A
Dias Current	I _O =1mA to 40mA	0°C to 125°C			0.1	mA

GM78L18: V_I = 26V, I_O = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDIT	TIONS *	MIN	TYP	MAX	UNIT
		25°C	17.3	18	18.7	
Output Voltage **	$I_O = 1 \text{mA to } 40 \text{mA}$ $V_1 = 20.5 \text{V to } 33 \text{V}$	0°C to 125°C	17.1	18	18.9	V
	I _O = 1mA to 70mA		17.1	18	18.9	
Innut Degulation	V _I =20.5V to 33V	0500		70	360	
Input Regulation	V _I =22V to 33V	25 C		64	300	mV
Ripple Rejection	V _I =21.5V to 31.5V, f = 120Hz	25°C	32	36		dB
Output Regulation	I _O =1mA to 100mA	0500		27	180	\
Output Regulation	I _O =1mA to 40mA	25°C		19	90	mV
Output Resistance	f = 10Hz to 100kHz	25°C		89		μV
Dropout Voltage		25°C		1.7		V
Pigo Current		25°C		4.7	6.5	
Bias Current		125°C			6.0	mA
Bias Current	V _I =22V to 33V	0°C to 125°C			1.5	А
Dias Current	I _O =1mA to 40mA	0 0 10 125 0			0.1	mA

^{*}Pulse testing tehniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account.

** The specification applies only for DC power dissipation permitted by absolute maximum ratings

POSITIVE VOLTAGE REGULATORS

♦ ELECTRICAL CHARACTERISTICS at specified Junction Temperature

GM78L24: V_I = 32V, I_O = 40mA, (unless otherwise noted)

CHARACTERISTICS	TEST CONDIT	IONS *	MIN	TYP	MAX	UNIT
		25°C	23	24	25	
Output Voltage **	I _O = 1mA to 40mA V _I =26.5V to 39V	0°C to 125°C	22.8	24	25.2	V
	I _O = 1mA to 70mA		22.8	24	25.2	
Input Degulation	V _I =26.5V to39V	0500		95	480	.,
Input Regulation	V _I =29V to 39V 25°C		78	400	mV	
Ripple Rejection	V _I =27.5V to 37.5V, f = 120Hz	0°C to 125°C	30	33		dB
Output Regulation	I _O =1mA to 100mA	25°C		41	240	mV
Output Negulation	I _O =1mA to 40mA	25 C		28	120	IIIV
Output Resistance	f = 10Hz to 100kHz	25°C		97		μV
Dropout Voltage		25°C		1.7		V
Bias Current		25°C		4.8	6.5	A
Dias Current		125°C			6.0	mA
Bias Current	V _I =28V to 39V	0°C to 125°C			1.5	A
Dias Cuitelit	I _O =1mA to 40mA	0 C to 125 C			0.1	mA

^{*}Pulse testing tehniques are used to maintain the junction temperature as close to the ambient temperature as possible.

Thermal effects must be taken into account.

** The specification applies only for DC power dissipation permitted by absolute maximum ratings

POSITIVE VOLTAGE REGULATORS

◆ TYPICAL PERFORMANCE CHARACTERISTICS

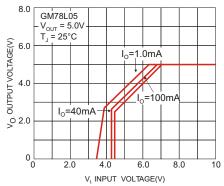


Figure 1. Dropout Characteristics

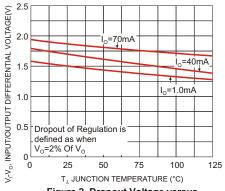


Figure 2. Dropout Voltage versus Junction Temperature

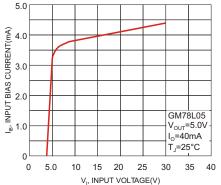


Figure 3. Input Bias Current versus Input Voltage

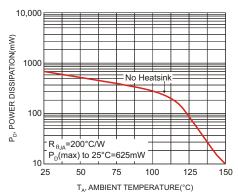


Figure 4. Maximum Average Power Dissipation versus Ambient Temperature-TO-92 Type Package

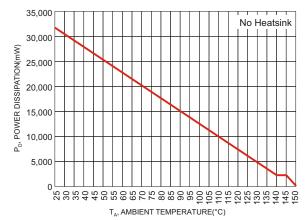


Figure 5. Maximum Average Power Dissipation versus Ambient Temperature SOT-89

Type Package

POSITIVE VOLTAGE REGULATORS

APPLICATION INFORMATION

Design Considerations

The GM78L00 series regulators have thermal overload protection from excessive power, internal short-circuit protection limits each circuit's maximum current, and output transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (125°C) in order to meet data sheet specifications.

Thermal Considerations

The TO-92 molded package is capable of unusual high power dissipation due to the lead frame design. However, its thermal capabilities are generally overlooked because of a lack of understanding of the thermal paths from the semiconductor junction to ambient temperature.

While thermal resistance is normally specified for the device mounted 1cm above an infinite heat sink, very little has been mentioned of the options available to improve the conservatively rated thermal capability. An explanation of the thermal paths of the TO-92 will allow the designer to determine the thermal stress which is applying in any given application.

The TO-92 Package

The TO-92 package thermal paths are complex. In addition to the path through the molding compound to ambient temperature, there is another path through the leads, in parallel with the case path, to ambient temperature, as shown in Figure 5.

The total thermal resistance in this model is then:

$$\theta_{JA} = \frac{(\theta_{JA} + \theta_{CA})(\theta_{JL} + \theta_{LA})}{\theta_{JA} + \theta_{CA} + \theta_{JL} + \theta_{LA}}$$

Where:

JC = thermal resistance of the case between the regulator die and a point on the case directly above the die location.

_{CA} = thermal resistance between the case and air at ambient temperature.

 $_{\rm JL}$ = thermal resistance from regulator die through the input lead to a point 1/16 inch below the regulator case.

IA = total thermal resistance of the input/output ground leads to ambient temperature.

JA = junction to ambient thermal resistance.

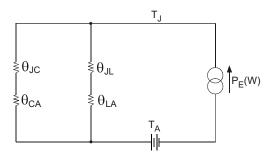
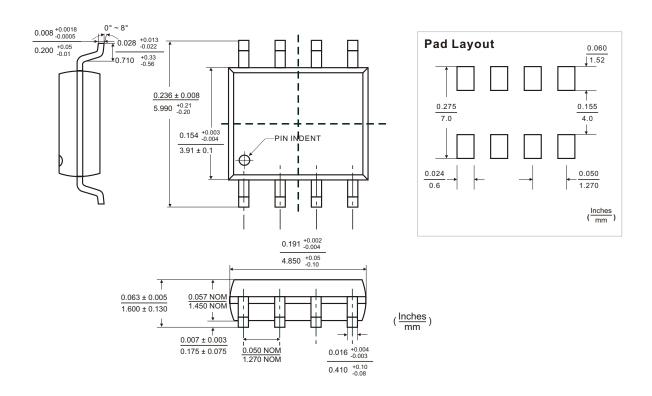
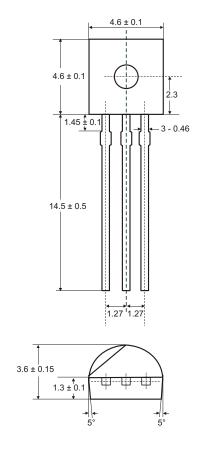
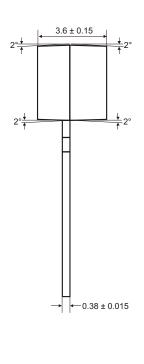



Figure 5. TO-92 Thermal Equivalent Circuit

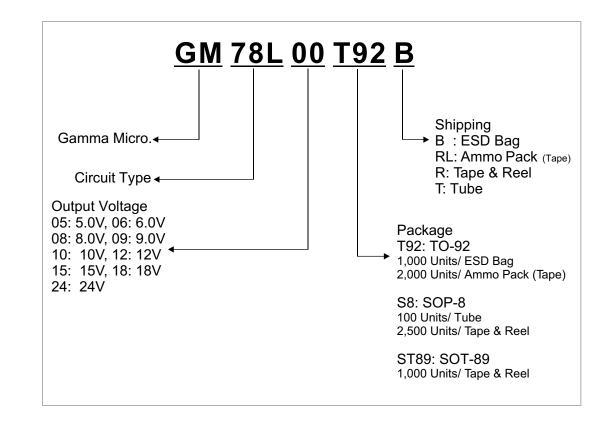



POSITIVE VOLTAGE REGULATORS

♦ SOP-8 PACKAGE OUTLINE DIMENSIONS

TO-92 PACKAGE OUTLINE DIMENSIONS

Unit: mm



POSITIVE VOLTAGE REGULATORS

SOT-89 PACKAGE OUTLINE DIMENSIONS

ORDERING NUMBER

POSITIVE VOLTAGE REGULATORS

GAMMA Micro, and are registered trademarks of GAMMA MICROELECTRONICS INC. GAMMA reserves the right to make changes without further notice to any products herein. Information provided herein is alleged to be exact and consistent and this publication surpasses and replaces all information previously supplied.

GAMMA makes no warranty the suitability of its products for any particular purpose, nor does GAMMA assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability including without limitation special, consequential or incidental damages.

GAMMA products are not authorized for using as critical components in life support devices or systems without prior written approval from GAMMA MICROELECTRONICS INC.